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Two lattice traffic models are proposed by incorporating a cooperative driving system. The lattice versions
of the hydrodynamic model of traffic flow are described by the differential-difference equation and difference-
difference equation, respectively. The stability conditions for the two models are obtained using the linear
stability theory. The results show that considering more than one site ahead in vehicle motion leads to the
stabilization of the system. The modified Korteweg–de Vries equationsthe mKdV equation, for shortd near the
critical point is derived by using the reductive perturbation method to show the traffic jam which is proved to
be described by kink-anti-kink soliton solutions obtained from the mKdV equations.
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I. INTRODUCTION

Traffic jam is an important issue from the viewpoint of
transportation efficiency and pollution. Therefore the issue
has attracted much attention recently. There are various ap-
proaches to describe the characteristics of traffic flow, such
as the cellular automaton models, car-following models, gas
kinetic models and hydrodynamic modelsf1–8g. Recently,
some researchers have investigated the traffic jam by use of
nonlinear analysis. Kerner and Konhäuserf9g presented the
nonlinear theory of the cluster effect in traffic flow, and de-
rived the structures of a stationary moving cluster. Kurtze
and Hongf10g derived the KdV equation with the hydrody-
namic model and showed that the traffic soliton appears near
the neutral stability line. Komatsu and Sasaf11g deduced the
mKdV equation with the optimal velocity model proposed by
Bandoet al.. f12,13g, while Nagatanif14,15g worked out the
mKdV equation from the hydrodynamic model to describe
the density waves in congestion. In real traffic flow, Kerner
et al.. f16g and Knospef17g made many of experimental
investigations of traffic on highways, and found the wide
moving traffic jams. Moreover Kerneret al.. f18g used an
asymptotic theory of traffic jams based on the singular per-
turbation methods to derive formulas for the characteristic
parameters of traffic flow.

For public demand, it is necessary to enhance the traffic
current and avoid jams. Traffic control systems have been
utilized as a part of intelligent transport systemsfor short,
ITSd. Drivers can receive information about other vehicles
on roads, and then determine the velocity of their own ve-
hicles. Thus the stability of traffic flow can be raised and the
appearance of traffic jam might be suppressed. Some work
has been done on the traffic behavior with the consideration
of ITS control. Helbing f5g presented an improved gas-
kinetic traffic model, which differs from others mainly by its
nonlocal interaction term that takes into account the space
requirements of vehicles and the correlations of successive
vehicle velocities. The model reflects the anticipation behav-
ior of drivers, which is responsible for a smoothing effect
that acts only in the backward direction. Nagatanif19g put
forward an extended optimal velocity model involving the
vehicle interaction with the next car aheadsi.e., the next-

nearest-neighbor interactiond. Xue f3g proposed a lattice
model of optimal traffic flow considering the optimal current
of the next-nearest-neighbor interaction. Lenz, Wanger and
Sollacherf20g discussed a model in which a driver looks at
many vehicles ahead of him or her. Hasebe, Nakayama and
Sugiyamaf21,22g proposed an extended optimal velocity
model which is applicable to a cooperative driving control
system. In their model, drivers are assumed to be able to
adjust their velocity by utilizing the information of an arbi-
trary number of vehicles that precedes or follows them. They
found that there exists a certain set of parameters that makes
traffic flow ”most stable” in the ”forward looking” optimal
velocity model.

Nagatani proposed a simplified versions of the hydrody-
namic modelsf14g in 1998. He used the continuum models
to describe the jamming transition in traffic flow on a high-
way. Model I is described as

]tr + ]xsrvd = 0, s1d

]trv = ar0V„rsx + dd… − arv, s2d

wherer0 is the average density, anda is the sensitivity of a
driver; rsx+dd is the local density at positionx+d at timet ;d
represents the average headway, which meansd=1/r0; local
density rsx+dd is related with the inverse of headway
hsx,td :rsx+dd=1/hsx,td. The idea is that a driver adjusts the
car velocity according to the observed headwayhsx,td for
density aheadrsx+ddg.

Model II is the lattice version of model I with dimension-
less spacex

]tr j + r0sr jv j − r j−1v j−1d = 0, s3d

]tr jv j = ar0Vsr j+1d − ar jv j . s4d

where j denotes sitej on the one-dimensional lattice, and
r jstd ,v jstd represent the local density and the local average
velocity on sitej at time t, respectively.

On the basis of lattice model of Nagatanif14,15,23g, we
propose the extended lattice version of the continuum mod-
els considering an arbitrary number of sites ahead on a

PHYSICAL REVIEW E 71, 066119s2005d

1539-3755/2005/71s6d/066119s7d/$23.00 ©2005 The American Physical Society066119-1



single-lane highway. We obtain the stability conditions of the
two models using the linear stability theory, and then derive
the mKdV equations near the critical point by using nonlin-
ear analysis. We find the traffic jam described by kink-
antikink soliton solutions for the mKdV equations.

II. MODELS

The extended lattice version of the continuum models
considering an arbitrary number of sites ahead on a single-
lane highway is proposed. The vehicle motion is described
by the following differential-difference equations, called
model A:

]tr j + r0sr jv j − r j−1v j−1d = 0, s5d

r jst + tdv jst + td = r0V„r j+1std,r j+2std, . . . ,r j+nstd…. s6d

wheren denotes the number of sites ahead considered. As
n=1, the original lattice version of the continuum modelf23g
on a single-lane highway is recovered. Equations5d is the
lattice version of a continuity equation, while Eq.s6d is the
evolution equation. We select the optimal velocity as

Vsr j+1,r j+2, . . . ,r j+nd = tanh1 2

r0
−

o
l=1

n

blr j+lstd

r0
2 −

1

rc
2

+ tanhS 1

rc
D . s7d

Herebl is the weighting function tor j+l, which corresponds
to sensitivityai in the multi-anticipative car-following model
f20g. The difference between them lies in that the optimal
velocity in Ref.f20g is related to a certain position, while in
this paper the traffic flow ahead is regarded as a whole, con-
sidering nonlocal effect. It is necessary to point out that
blsl =1,2, . . . ,nd have the properties as followss1d bl de-
creases monotonically with increasing value ofl, which
meansbl /bl−1,1, for we know that the influence of the sites
ahead on the vehicle motion reduces gradually as the dis-
tance between the considered site and a site ahead increases.
s2d ol=1

n bl =1. Equations7d has the inflection point atr j =rc
whenr0=rc. t is introduced to denote the delay time that it
takes the traffic current to reach the optimal current andt is
the inverse of the sensitivitya. We assume that a driver can
obtain the information of any site density ahead. The traffic
currentr jst+tdv jst+td on the sitej at timet+t is determined
by the optimal currentr0V(r j+1std ,r j+2std , . . . ,r j+nstd) on site
j +1,j +2, . . . ,j +n at time t.

We present another model, model B, which is described
by following a difference-difference equation in which both
space and time are discrete variables:

r jst + td − r jstd + tr0fr jstdv jstd − r j−1stdv j−1stdg = 0, s8d

r jst + tdv jst + td = r0V„r j+1std,r j+2std, . . . ,r j+nstd…. s9d

By eliminating velocity in Eqs.s5d ands6d fand also in Eqs.
s8d and s9dg, we obtain the density equations for models A
and B:

]tr jst + td + r0
2FVSo

l=1

n

blr j+lstdD − VSo
l=1

n

blr j+l−1stdDG = 0,

s10d

r jst + 2td − r jst + td + tr0
2FVSo

l=1

n

blr j+lstdD
− VSo

l=1

n

blr j+l−1stdDG = 0. s11d

III. LINEAR STABILITY ANALYSIS

The linear stability analysis is made for the above traffic
models. It is obvious that the uniform traffic flow with con-
stant density r0 and constant optimal velocity
Vsr0,r0, . . . ,r0d is the steady state solution for Eqs.s10d and
s11d, given as

r jstd = r0 andv jstd = Vsr0,r0, . . . ,r0d, s12d

Supposeyjstd to be a small deviation from the steady state
density of thej th vehicle

r jstd = r0 + yj . s13d

Substituting Eq.s13d into Eqs.s10d and s11d and linearizing
them yield

]tyjst + td + r0
2V8sr0dFo

l=1

n

bl„yj+lstd − yj+l−1std…G = 0,

s14d

yjst + 2td − yjst + td + tr0
2V8sr0dFo

l=1

n

bl„yj+lstd − yj+l−1std…G
= 0, s15d

where V8sr0d=fdVsr jd /dr jgur j=r0
becauseol=1

n blyj+lstd is a
small and bounded function.

Expandingyj in the Fourier modes:yjstd=expsikj +ztd, we
obtain

zezt + r0
2V8So

l=1

n

blseikl − eiksl−1ddD = 0, s16d

e2zt − ezt + tr0
2V8So

l=1

n

blseikl − eiksl−1ddD = 0. s17d

For simplicity, V8sr0d is indicated asV8 in the above equa-
tions and hereafter. Expandingz=z1sikd+z2sikd2+… and in-
serting it into Eqs.s16d ands17d lead to the first- and second-
order terms of coefficient in the expression ofz, respectively,
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z1 = − r0
2V8 andz2 = − tsr0

2V8d2 − r0
2V8o

l=1

n

blSl −
1

2
D ,

s18d

z1 = − r0
2V8 andz2 = −

2

3
tsr0

2V8d2 − r0
2V8o

l=1

n

blSl −
1

2
D ,

s19d

The neutral stability condition is given by

t = −

o
l=1

n

bls2l − 1d

2r0
2V8

, for model A, s20d

t = −

o
l=1

n

bls2l − 1d

3r0
2V8

, for model B. s21d

For small disturbances with long wavelengths, the uniform
traffic flow is unstable in the condition that

t . −

o
l=1

n

bls2l − 1d

2r0
2V8

, for model A, s22d

t . −

o
l=1

n

bls2l − 1d

3r0
2V8

, for model B. s23d

The neutral stability lines in the parameter spacesr ,ad are
shown in Fig. 1 for model A. There exist critical points
src,acd for the neutral stability lines, such that uniform states
with any density are always linearly stable fora.ac, while
the uniform states in a neighborhood ofrc are unstable for
a,ac. As n=1, the critical points and the neutral stability
lines are consistent with those in a single-lane highway traf-
fic flow f23g. From the figure it can be seen that with taking
into account more sites ahead, the critical points and the
neutral stability lines decrease, which means the stability of
the uniform traffic flow has been strengthened. The traffic
jam is thus efficiently suppressed.

IV. NONLINEAR ANALYSIS

Because of the complexity of Eqs.s10d and s11d, it is
difficult to extract the essential properties of solutions. Thus
we use the reductive perturbation method to Eqs.s10d and
s11d focusing on the system behavior near the critical point
src,acd. With such simplification, the nature of kink-antikink
solitons can be described by the mKdV equations. We intro-
duce slow scales for space variablej and time variablet
f24,25g, and define the slow variablesX andT

FIG. 1. The neutral stability lines considering different lattices ahead.

STABILIZATION ANALYSIS AND MODIFIED … PHYSICAL REVIEW E 71, 066119s2005d

066119-3



X = «s j + btdandT = «3t,0 , « ! 1, s24d

whereb is a constant to be determined. Let

r jstd = rc + «RsX,Td. s25d

Substituting Eqs.s24d ands25d into Eqs.s10d, s11d and mak-
ing the Taylor expansions to the fifth order of« lead to the
expression.

«2sb + rc
2V8d]XR+ «3Fb2t +

rc
2V8

2 o
l=1

n

bls2l − 1dG]X
2R

+ «4H]TR+ Fb3t2

2
+

rc
2V8

6 o
l=1

n

bls3l2 − 3l + 1dG]X
3R

+
rc

2V-

6
]XR3J + «5H2bt]X]TR

+ Fb4t3

6
+

rc
2V8

24 o
l=1

n

bls4l3 − 6l2 + 4l − 1dG]X
4R

+
rc

2V-

4 o
l=1

n

bls2l − 1dfR2]X
2R+ 2Rs]XRd2gJ = 0, s26d

«2sb + rc
2V8d]XR+ «3F3

2
b2t +

rc
2V8

2 o
l=1

n

bls2l − 1dG]X
2R

+ «4H]TR+ F7b3t2

6
+

rc
2V8

6 o
l=1

n

bls3l2 − 3l + 1dG]X
3R

+
rc

2V-

6
]XR3J + «5H3bt]X]TR

+ F5b4t3

8
+

rc
2V8

24 o
l=1

n

bls4l3 − 6l2 + 4l − 1dG]X
4R

+
rc

2V-

4 o
l=1

n

bls2l − 1dfR2]X
2R+ 2Rs]XRd2gJ = 0, s27d

whereV8=fdVsr jd /dr jgur j=rc
andV-=fd3Vsr jd /dr j

3gur j=rc
. V8

and V- correspond toV8srcd ,V-srcd in the above equation
and hereafter. Near the critical pointsrc,acd ,t=s1+«2dtc,
taking b=−rc

2V8 and eliminating the second- and third-order
terms of« from Eqs.s26d and s27d result in the simplified
equation:

«4H]TR+ Fb3tc
2

2
+

rc
2V8

6 o
l=1

n

bls3l2 − 3l + 1dG]X
3R

+
rc

2V-

6
]XR3J + «5Hb2tc]X

2R+
rc

2V-

4 o
l=1

n

bls2l − 1d

3fR2]X
2R+ 2Rs]XRd2g + F−

5b4tc
3

6

−
btcrc

2V8

3 o
l=1

n

bls3l2 − 3l + 1d +
rc

2V8

24 o
l=1

n

bls4l3 − 6l2

+ 4l − 1dG]X
4RJ = 0, s28d

«4H]TR+ F7b3tc
2

6
+

rc
2V8

6 o
l=1

n

bls3l2 − 3l + 1dG]X
3R

+
rc

2V-

6
]XR3J + «5H3

2
b2tc]X

2R+
rc

2V-

4

3Fo
l=1

n

bls2l − 1d − 6btcGfR2]X
2R+ 2Rs]XRd2g

+ F−
69b4tc

3

24
−

btcrc
2V8

2 o
l=1

n

bls3l2 − 3l + 1d

+
rc

2V8

24 o
l=1

n

bls4l3 − 6l2 + 4l − 1dG]X
4RJ = 0. s29d

In order to obtain the standard mKdV equation with
higher order correction, we make the following transforma-
tions for Eqs.s28d and s29d:

T8 = −Fb3tc
2

2
+

rc
2V8

6 o
l=1

n

bls3l2 − 3l + 1dGT, s30d

R= F− 3b3tc
2

rc
2V-

−
rc

2V8

rc
2V-

o
l=1

n

bls3l2 − 3l + 1dG1/2

R8, s31d

T8 = −F7b3tc
2

6
+

rc
2V8

6 o
l=1

n

bls3l2 − 3l + 1dGT, s32d

R= F− 7b3tc
2

rc
2V-

−
rc

2V8

rc
2V-

o
l=1

n

bls3l2 − 3l + 1dG1/2

R8. s33d

Considering Eqs.s20d and s21d we obtain the regularized
equations

]T8R8 = ]X
3R8 − ]XR83 − «M1fR8g, s34d

]T8R8 = ]X
3R8 − ]XR83 − «M2fR8g, s35d

where

TABLE I. The critical sensitivityac and the propagation veloc-
ity c1 in model A.

n 1 2 3 4 5 11 12 20

F1 ac 2.0 1.33333 1.23077 1.20755 1.20188 1.20001 1.2 1.2

c1 24 24 24 24 24 24 24 24

F2 ac 2.0 1.2 1.05882 1.01887 1.00621 1.00001 1.0 1.0

c1 24 24 24 24 24 24 24 24
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M1fR8g =
24o bls2l − 1d

2o bls1 − 12l2d + 24so blld2
]X

2R8 −
3

2o
l=1

n

bls2l − 1dfR82]X
2R8 + 2R8s]XR8d2g

+
− 1 + 2o bls− 4l3 − 6l2 + ld + 12so blld2 + 48so bll

3/2d2 − 40so blld3

2o bls1 − 12l2d + 24so blld2
]X

4R8, s36d

M2fR8g =
24o bls2l − 1d

o bls2 + l + 27l2d − 28so blld2
]X

2R8 −
3

2o
l=1

n

bls2l − 1dfR82]X
2R8 + 2R8s]XR8d2g

+
2 − 3o bls− 6l3 − 9l2 + ld − 30so blld2 − 108so bll

3/2d2 + 92so blld3

− 2o bls2 + l + 27l2d + 56so blld2
]X

4R8, s37d

whereo denotesol=1
n . Equationss34d ands35d are the modified KdV equations withOs«d correction terms on the right-hand

side. First, we ignore theOs«d terms in Eqs.s34d and s35d, and get the mKdV equation with the kink solution

R08sX,T8d = Îc tanhÎc

2
sX − cT8d. s38d

Next, supposingR8sX,T8d=R08sX,T8d+«R18sX,T8d, we take into account theOs«d correction. To determine the selected value
of the propagation velocityc for the kink solutions38d, it is necessary to consider the solvability conditionf26,27g

sR08,M1fR08gd ; E
−`

+`

dXR08M1fR08g = 0,

sR08,M2fR08gd ; E
−`

+`

dXR08M2fR08g = 0, s39d

where

M1fR08g = M1fR8g andM2fR08g = M2fR8g.

By performing the integration, we obtain the selected velocityc

c1 =
− 120o bls2l − 1d

o bls1 − 10l + 60l2 + 16l3d − 60so blld2 − 168so bll
3/2d2 + 152so blld3

, s40d

c2 =
− 270o bls2l − 1d

o bls10 − 15l + 135l2 + 36l3d − 150so blld2 − 378so bll
3/2d2 + 352so blld3

. s41d

We obtain the kink-antikink soliton solutions for models A and B

RsX,Td = F− 3b3tc
2c1

rc
2V-

−
rc

2V8c1

rc
2V-

o
l=1

n

bls3l2 − 3l + 1dG1/2

tanhÎc1

2 FX + c1Sb3tc
2

2
+

rc
2V8

6 o
l=1

n

bls3l2 − 3l + 1dDTG , s42d

RsX,Td = F− 7b3tc
2c2

rc
2V-

−
rc

2V8c2

rc
2V-

o
l=1

n

bls3l2 − 3l + 1dG1/2

tanhÎc2

2 FX + c2S7b3tc
2

6
+

rc
2V8

6 o
l=1

n

bls3l2 − 3l + 1dDTG , s43d

whereb,tc,c1,c2 given before.

V. RESULT ANALYSIS AND DISCUSSION

On the basis of the linear stability theory and the nonlin-
ear wave analysis, we obtain the critical pointssrc,acd and

the propagation velocitiesc1,c2 of the kink-antikink solu-
tions for models A and B. Now we select two specific opti-
mal functionssbl =1 for n=1d. In this paper, we take tenta-
tively for n.1
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F1 ; bl =5
3

4l , l Þ n,

1

4n−1 , l = n, 6 s44d

F2 ; bl =5
2

3l , l Þ n,

1

3n−1 , l = n. 6 s45d

We calculate the values of the critical sensitivityac and the
propagation velocitiesc1,c2 by use of Eqs.s44d and s45d.
They are shown in Tables I and II.

Table I shows the propagation velocityc1 is a constant,
while Table II shows the propagation velocityc2 is variable
and increases with increasingn. In both models, the critical
sensitivities decrease with the increase ofn, and the stability
regions are enlarged for the two models. Asn raises up to a
certain value, the critical sensitivitiesac and the propagation
velocitiesc2 will not change again, and the system is in a
stable state. In fact, only the former three terms play an im-
portant role to the stability. We may consider this state as the
optimal state. The information of this state is enough for a
driver.We also find that as the ratiosbl /bl−1 of weighting
function are bigger, the whole stability is better. Asn=1,
which corresponds to the first value of weighting function is
1 and the others are 0, the stability region is the smallest. So
considering, the cooperative driving system will stabilize the
traffic flow.

The neutral stability lines in the parameter spacesr ,ad are
shown in Fig. 1 for model A and the optimal function is
described by Eqs.s44d in the model.

VI. SUMMARY

We have proposed two lattice hydrodynamic models of
traffic flow for the purpose of constructing a driving system
for freeway traffic and given a form of optimal velocity func-
tion taking into account the nonlocal effect. The traffic nature
has been analytically analyzed by using the linear stability
theory and the nonlinear analysis. It has been shown that
there exist critical points in the two models and obtained the
neutral stability lines, which demonstrate that multivehicle
consideration could further stabilize traffic flow, and consid-
ering three sites in front is an optimal state. We have derived
the mKdV equations to describe the traffic jam near the criti-
cal points, respectively, and obtained the kink-antikink soli-
ton solutions related to the traffic density waves. Moreover,
two examples with different optimal velocity functions are
calculated to show the results clearly. Asn=1, the two mod-
els reduce to the original lattice version of the continuum
models on a single-lane highway, and the results are identi-
cal.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of ChinasGrant Nos. 10202012, 10362001d, and
the Special Research Fund for the Doctoral Programs in
Higher Education of ChinasSRFDP No. 20040280014d.

f1g D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep.
329, 199 s2000d.

f2g K. Nishinari and D. Takahashi, J. Phys. A33, 7709s2000d.
f3g Xue Yu, Acta Phys. Sin.53, 25s2004d.
f4g Y. Ishibashi and M. Fukui, J. Phys. Soc. Jpn.65, 2793s1996d.
f5g D. Helbing, A. Hennecke, V. Shvetsov and M. Treiber, Transp.

Res., Part B: Methodol.35, 183 s2001d.
f6g H. X. Ge, S. Q. Dai, L. Y. Dong, and Y. Xue, Phys. Rev. E70,

066134s2004d.
f7g D. Helbing and M. Treiber, Phys. Rev. Lett.81, 3042s1998d.
f8g D. Helbing, Phys. Rev. E53, 2366s1996d.
f9g B. S. Kerner and P. Konhäuser, Phys. Rev. E50, 54 s1994d.

f10g D. A. Kurtze and D. C. Hong, Phys. Rev. E52, 218 s1995d.
f11g T. Komatsu and S. Sasa, Phys. Rev. E52, 5574s1995d.

f12g M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sug-
iyama, Jpn. J. Ind. Appl. Math.11, 203 s1994d.

f13g M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sug-
iyama, Phys. Rev. E51, 1035s1995d.

f14g T. Nagatani, Physica A261, 599 s1998d.
f15g T. Nagatani, Physica A265, 297 s1999d.
f16g B. S. Kerner and H. Rehborn, Phys. Rev. E53, R1297s1996d.
f17g Wolfgang Knospe, Ludger Santen, Andreas Schadschneider,

and Michael Schreckenberg, Phys. Rev. E65, 056133s2002d.
f18g B. S. Kerner, S. L. Klenov, and P. Konhäuser, Phys. Rev. E

56, 4200s1997d.
f19g T. Nagatani, Phys. Rev. E60, 6395s1999d.
f20g H. Lenz, C. K. Wagner, and R. Sollacher, Eur. Phys. J. B7,

331 s1998d.

TABLE II. The critical sensitivityac and the propagation velocityc2 in model B.

n 1 2 3 4 5 6 11 20

F1 ac 3.0 2.0 1.84615 1.81132 1.80282 1.8007 1.8 1.8

c2 27 32 33.9656 34.5222 34.666 34.7022 34.7143 34.7143

F2 ac 3.0 1.8 1.58824 1.5283 1.50932 1.5 1.5 1.5

c2 27 34.7143 39.7636 41.968 42.7788 43.1999 43.2 43.2

GE et al. PHYSICAL REVIEW E 71, 066119s2005d

066119-6



f21g K. Hasebe, A. Nakayama, and Y. Sugiyama, Phys. Rev. E69,
017103s2004d.

f22g K. Hasebe, A. Nakayama, and Y. Sugiyama, Phys. Rev. E68,
026102s2004d.

f23g T. Nagatani, Physica A264, 581 s1999d.
f24g M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851

s1993d.
f25g Dai Shi-Qiang, Adv. Mech.12, 2 s1982d sin Chinesed.
f26g T. Nagatani, Phys. Rev. E58, 4271s1998d.
f27g A. H. Nayfeh,Introduction to Perturbation TechniquesWiley,

New York, 1981d, p. 7.

STABILIZATION ANALYSIS AND MODIFIED … PHYSICAL REVIEW E 71, 066119s2005d

066119-7


